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The hybrid approach of the domain-type and the boundary-type meshless methods is applied to the steady-state scattering problems
of electromagnetic wave. In addition, the performance of the proposed method is investigated numerically. The results of computations
show that the convergent rate is almost the same value regardless of the wave number, and the accuracy of the proposed method is
degraded with an increase in the value of the wave number. In addition, the GMRES method without restart is a useful solver for
a large-scale simulation.

Index Terms—Boundary value problems, integral equations, numerical analysis, partial differential equations.

I. INTRODUCTION

RECENTLY, the steady-state scattering problems of elec-
tromagnetic wave has been solved by using the hybrid

method [1], [2]. In the hybrid method, the finite element
method (FEM) and the boundary element method (BEM) are
applied to internal problem and the external one, respectively.
Thereafter, the resulting linear systems are combined. On the
other hand, a target domain, a boundary and an interface must
be divided into a set of elements for obtaining the solution in
conventional method. This process is time-consuming in the
case where the object shape is complex.

In order to resolve the disadvantage of the element-based
methods such as the FEM and the BEM, some meshless
methods have been proposed [3]–[6]. The meshless methods
can classify as either the domain-type method or the boundary-
type one. If the domain-type meshless method or the boundary-
type one are applied instead of the FEM and the BEM, the
hybrid method without the mesh generation can be proposed.

The purpose of the present study is to develop the numerical
approach using only meshless method for solving the steady-
state scattering problems of the electromagnetic wave and to
investigate the performance numerically.

II. NUMERICAL APPROACH

For simplicity, we consider the steady-state scattering prob-
lem of electromagnetic waves from a cylindrical objects of an
arbitrary cross section. In addition, we assume an TM wave is
incident on the normal direction to the axis of the cylinder. In
other words, we deal with the following problem:

−
(
∆+ k2

)
Ez = 0, in ΩI (1)

−
(
∆+ k2

)
Ez = E0 δ (x− xs) , in ΩE (2)

where ΩI and ΩE denote a domain bounded by a simple
closed curve ∂Ω and an infinite domain which encloses ΩI,
respectively. Furthermore, Ez , E0 and k denote the z-axis
component of total electric field, the amplitude of incident
electric field and a wave number, respectively. Moreover,

δ (x− xs) denotes the two-dimensional Dirac delta function,
and xs is a point at which a source of electric field located.
As the boundary condition, we give the following equations:

[[Ez]] = 0, on ∂Ω,[[
∂Ez

∂n

]]
= 0, on ∂Ω

where n indicate an unit normal on ∂Ω. Furthermore, [[ ]]
means the operator which denotes a gap of operand across the
boundary. Throughout the present study, the boundary-value
problem of (1) and that of (2) are called the internal problem
and the external one, respectively.

Before discretizing, we must derive both a weak form in
the internal problem and a boundary integral equation in the
external problem. By assuming that the Dirichlet boundary
condition is imposed on ∂Ω, we can get the following weak
form:

∀w s.t. w
∣∣
∂Ω

= 0 : J [w,Ez] = 0, (4)

where J [w, u] is the functional defined by

J [w, u] ≡
∫∫

ΩI

∇w · ∇u d2x− k2
∫∫

ΩI

w u d2x.

Moreover, ∀w s.t.w
∣∣
∂Ω

= 0 denotes an arbitrary function w (x)
that fulfills w = 0 on ∂Ω. By assuming that the Sommerfeld
radiation condition is satisfied at infinity, (2) is transformed
to be equivalent to the boundary integral equation. Its explicit
form is given by

c(y)Ez(y) +

∮
∂Ω

∂w∗ (x(s),y)

∂nE
Ez(x(s))ds

−
∮
∂Ω

w∗ (x(s),y)
∂Ez(x(s))

∂nE
ds = E0 w

∗(xs,y), (5)

where c(y) is a shape coefficient and w∗(x,y) is the fun-
damental solution of −(∆ + k2). Furthermore, s denote an
arclength along ∂Ω. Throughout the present study, we apply
the collocation EFGM [5] and the X-BNM [6] to the internal
problem and the external one, respectively.



In order to discretize the weak form (4), the boundary inte-
gral equation (5) and the associated boundary conditions, the
N nodes are placed in ΩI ∪ ∂Ω. Subsequently, the MLS shape
functions ϕi(x) (i = 1, 2, · · · , N) are assigned to all nodes.
Similarly, the RPIM shape functions ψp(s) (p = 1, 2, · · · ,M)
are assigned to nodes on ∂Ω. Here, M denotes the number of
nodes on ∂Ω.

Under the above assumptions, (4), (5) and its associated
boundary conditions are discretized to the linear system. By
solving the linear system, we can obtain the distributions of
the solution on ∂Ω ∪ΩI. Note that the resulting linear system
has not a diagonal-dominant coefficient matrix. Furthermore,
its matrix also becomes complex and asymmetric. Hence, we
cannot solve it by using stationary iterative methods. For this
reason, the GMRES method for the complex linear system has
been adopted as the solver.

III. PERFORMANCE EVALUATION

In this section, we investigate the performance of the pro-
posed method. Throughout the present section, the boundary
∂Ω is assumed as ∂Ω =

{
(x, y)|x2 + y2 = 4

}
. Furthermore,

the analytic solution of target problem is given by

Ez

E0
= − i

4
H

(2)
0

(
k
√
x2 + (y − 3)2

)
,

where H(2)
0 (x) denotes the Hankel function of the second kind

for integer order zero. In this study, E0 is fixed as E0 = 1
The nodes are uniformly placed in ΩI∪∂Ω. Moreover, weight

function wi(x) used in the MLS shape function is given by

wi(x) = w (|x− xi|) ,

ρ(r̄) =


exp[−(r̄/c1)

2]−exp[−(R̄/c1)
2
]

1−exp[−(R̄/c1)
2
]

(r̄ ≤ R̄)

0 (r̄ > R̄).

Here, R̄ and c1 indicate a support radius and a constant,
respectively. In this study, c1 is assumed to be equal to the
minimum distance h between two nodes and R̄ is fixed as
R̄ = 2.5h. In addition, the radial basis function ri(s) used in
the RPIM shape function is given by

rp(s) = ρ (|s− sp|) ,

ρ(r̄) =

{
exp[−c2 r̄2] (r̄ ≤ Rp)

0 (r̄ > Rp).

where sp denotes the arclength to the pth boundary node.
Furthermore, Rp is defined by

Rp = γmin
(∣∣s mod (p+1,M) − sp

∣∣ , ∣∣s mod (p−1,M) − sp
∣∣) .

Here, c2 and γ is constants and these parameters are fixed as
c2 = 1, γ = 1.15.

Let us investigate the accuracy of the proposed method.
The relative errors are calculated as a function of N and are
depicted in Fig. 1. We see from this figure that the relative
errors are almost proportional to N−0.53. This tendency does
not depend on the value of k. In addition, the accuracy of the
proposed method becomes low with an increase in the value
of k.

Fig. 1. Dependence of the relative error ε on the total number N of nodes.
Here, the black, blue and red symbols denote k = 1, k = 0.5 and k = 0.1,
respectively.

Fig. 2. Dependence of the CPU time τ (s) required for the solver on the
number N of nodes. Here, the blue and red symbols denote the GMRES
method without restart and LU factorization, respectively.

Next, we evaluate the solver speed of the proposed method
by comparing with LU factorization. The CPU times are
plotted as a function of N in Fig. 2. This figure indicates
that the GMRES method is useful solver for a large-scale
simulation.

As the future work, we will apply the proposed method to
the problem with the complex boundary shape.
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